84 research outputs found

    Experimental implementation of a silicon wafer tandem solar cell

    Get PDF
    We combine aluminum back surface field (Al-BSF) solar cell precursors with an additional rear side infrared active floating emitter in a tandem cell configuration. This emitter is implemented area selectively by fs-laser hyperdoping in a sulfurous atmosphere. Its design as a floating emitter conceals losses induced by the laser process as long as n-doping occurs. All processes are adapted and supplemented by just a single new process step

    Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser

    Get PDF
    Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray–matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale

    Multiomics in the central Arctic Ocean for benchmarking biodiversity change

    Get PDF
    Multiomics approaches need to be applied in the central Arctic Ocean to benchmark biodiversity change and to identify novel species and their genes. As part of MOSAiC, EcoOmics will therefore be essential for conservation and sustainable bioprospecting in one of the least explored ecosystems on Earth

    Local and global regulation of transcription initiation in bacteria

    Get PDF

    An automated image-based workflow for detecting megabenthic fauna in optical images with examples from the Clarion–Clipperton Zone

    No full text
    Abstract Recent advances in optical underwater imaging technologies enable the acquisition of huge numbers of high-resolution seafloor images during scientific expeditions. While these images contain valuable information for non-invasive monitoring of megabenthic fauna, flora and the marine ecosystem, traditional labor-intensive manual approaches for analyzing them are neither feasible nor scalable. Therefore, machine learning has been proposed as a solution, but training the respective models still requires substantial manual annotation. Here, we present an automated image-based workflow for Megabenthic Fauna Detection with Faster R-CNN (FaunD-Fast). The workflow significantly reduces the required annotation effort by automating the detection of anomalous superpixels, which are regions in underwater images that have unusual properties relative to the background seafloor. The bounding box coordinates of the detected anomalous superpixels are proposed as a set of weak annotations, which are then assigned semantic morphotype labels and used to train a Faster R-CNN object detection model. We applied this workflow to example underwater images recorded during cruise SO268 to the German and Belgian contract areas for Manganese-nodule exploration, within the Clarion–Clipperton Zone (CCZ). A performance assessment of our FaunD-Fast model showed a mean average precision of 78.1% at an intersection-over-union threshold of 0.5, which is on a par with competing models that use costly-to-acquire annotations. In more detail, the analysis of the megafauna detection results revealed that ophiuroids and xenophyophores were among the most abundant morphotypes, accounting for 62% of all the detections within the surveyed area. Investigating the regional differences between the two contract areas further revealed that both megafaunal abundance and diversity was higher in the shallower German area, which might be explainable by the higher food availability in form of sinking organic material that decreases from east-to-west across the CCZ. Since these findings are consistent with studies based on conventional image-based methods, we conclude that our automated workflow significantly reduces the required human effort, while still providing accurate estimates of megafaunal abundance and their spatial distribution. The workflow is thus useful for a quick but objective generation of baseline information to enable monitoring of remote benthic ecosystems

    Megabenthic Fauna Detection with Faster R-CNN (FaunD-Fast) Short description of the research software

    No full text
    This is an A.I. - based workflow for detecting megabenthic fauna from a sequence of underwater optical images. The workflow (semi) automatically generates weak annotations through the analysis of superpixels, and uses these (refined and semantically labeled) annotations to train a Faster R-CNN model. Currently, the workflow has been tested with images of the Clarion-Clipperton Zone in the Pacific Ocea
    • …
    corecore